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Research Statement 

1   Introduction 

From a young age I have been intrigued by mathematics and felt a strong compassion for the environment. 

Naturally, my curiosity is piqued when the two are coupled. I began research with my advisers because of 

our similar interests. My chemistry adviser, Dr. Johna Leddy, develops efficient techniques for transferring 

electrons across various interfaces. Primarily, she applies her expertise to common energy applications 

such as batteries, solar cells, and capacitors. Dr. Gerhard Strohmer, my math adviser, studies partial 

differential equations at a theoretical level. I use his work on theory to find numerical solutions that arise 

in the area studied by Dr. Leddy. In short, I work on problems motivated by chemistry, engineering, and 

electromagnetism using tools from partial differential equations and numerical analysis. 

2   Electrochemistry Background  

The fundamental process that lies at the foundation of batteries, capacitors, and solar cells is the electron 

transfer process. This takes place at an interface or boundary in each device and is governed by its 

corresponding chemical reaction. Making these devices more efficient can help decrease our negative 

impact on the environment. In the field of electrochemistry, the common system for testing the efficiency 

of this effect is known as the three electrode system, shown in Figure 1. 

 

3   Present Work  

In Dr. Leddy’s Lab I have several projects. My dissertation project is my principal endeavor at this time. 

The research first stemmed from a chemistry experiment performed by a previous graduate student. 

Quite simply, the concept involves bubbles or vapor cavities. These cavities possess enormous amounts 

of energy (several thousand Celsius and atmospheres of pressure). When vapor cavities collapse they can 

be very harmful, resulting in corrosion. Accordingly, we have designed a cell that utilizes the energy 

Figure 1. The molecule A 

(redox probe) migrates 

to the electrode surface 

and undergoes a reaction 

(heterogeneous electron 

transfer) giving off an 

electron. This species 

then becomes species B.  
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without the drawbacks. Sound waves used on a small-scale cell generate the energy in solution without 

the destructive process. The recent experiments show enhanced effects on the electron transfer process 

and cause the reaction to become more reversible. In particular, we see this electrocatalytic effect when 

the solution contained in the electrochemical cell (shown in Figure 2) forms a curved meniscus at the top.    

 

The primary focus of my model is to answer what happens as the sound waves interact with the meniscus. 

To model this, a fluid dynamical approach is invoked using the following four equations: 

𝑢𝑡 + 𝑢 ∙ ∇𝑢 + (
1

𝜌
) ∇𝑃 = 0 (1) 

𝜌𝑡 + ∇ ∙ (𝜌𝑢) = 0 (2) 

𝜓𝑡 + 𝑢∇𝜓 = 0 (3) 

𝑃(𝜌) = 𝑃0 + 𝛽𝐻 (4) 

The first two equations are used to describe the movement of the fluid on the interior of the 

electrochemical cell. This is accomplished by representing the velocity as a potential flow described by 

the equation 𝑢 = −∇𝑈. In doing this, we gain a vector field interpretation of the movement of fluid. 

Equations (1) and (2), in general, relate velocity (𝑢), acceleration (𝑢𝑡), pressure (𝑃), and density (𝜌) to 

one another. The first equation is an Euler equation for incompressible fluids without friction in its most 

general form. Friction is considered negligible for this problem. This is because it introduces vorticity (local 

spinning of the fluid around a central point) into the problem; however for our problem the intensity of 

the sound waves and height of the cell dominate this kind of fluid dynamic. Equation (2), simply provides 

for conservation of mass in the system. Chemically or experimentally, it is clear that the catalytic 

phenomenon is derived from the waves and how they are affected by the top boundary. With the help of 

the third and fourth equations we can gain a better interpretation of what occurs at the top boundary. 

Equation (3) describes the boundary or surface motion of the meniscus. In this equation let 𝜓 be the 

function describing the shape of the surface and let its inputs be 𝑇𝑡(𝑥̃) and time, where 𝑇 is the position 

of parcel 𝑥̃ on the surface. One way to gain an understanding of what happens as the sound waves collide 

with the meniscus is to monitor the pressure on the meniscus. Sound waves can be described as the 

oscillation of pressure. We expect to see a change in pressure at the top boundary as the sound waves 

migrate through the interior and reach the meniscus. At the meniscus, the interior oscillations induce 

Figure 2. Diagram of 

electrochemical cell. The 

cell consists of a Teflon 

cylinder, transducer base, 

and three electrodes. 

Solution forms a meniscus 

with a height of 4mm from 

the top of the transducer. 
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movement in the boundary. Finally, equation (4) incorporates surface tension, 𝛽, mean curvature denoted 

by 𝐻 (a mathematical description of the changing surface geometry), and pressure, 𝑃. Surface tension is 

also an important physical phenomenon to incorporate in the model because the attraction between the 

molecules in the liquid cause it to make the shape it forms. Governed by equation (4) this effect, in turn, 

has a direct impact on the pressure.   

In order to develop an approximate solution to our equations we must first have a strong theoretical 

foundation. Combining equations (1) through (4) we arrive at boundary condition (6) involving the 

meniscus boundary only. We impose this boundary condition on the wave equation (5) to understand the 

impact of this constraint on the meniscus. 

𝑈𝑡𝑡 + 𝑃′(𝜌0)Δ𝑈 = 0 (5) 

𝜕𝑈

𝜕𝑛
=

𝑙

|∇𝜓0|
𝐿−1(Δ𝑈) (6) 

 

Invoking principles from functional analysis, we establish that our operator (𝐿) is elliptic and symmetric. 

Then using the weak formulation and the Lax-Milgram Lemma, we establish the existence of 𝐿−1. Our 

domain of definition for the Laplacian in equation (5) involves a constraint that derives directly from 

conservation of mass. The establishment of these properties is important because it allows us to embed 

the solution space in a normed function space, in particular a Hilbert space.  Listed also in equation (6) is 

a constant we denote by 𝑙.  

Now that we have established our background we use the following numerical analysis approach to probe 

our solution. With the help of the variational form and the Galerkin Method an approximation converges 

to the solution of the wave equation using MATLAB. The resulting eigenfunctions can be interpreted 

physically as standing waves.  

Further analysis is remains to be done. One option for further research involves the kinetic energy 

distribution in the cell. This is calculated using an inner product which has units of kinetic energy density. 

Potentially an approach based on a different physical entity, such as kinetic energy, may reveal new insight 

into the problem. Lastly, we may consider including small viscosity affects.    

4   Past and Future Work  

In the past I conducted a study on film modified electrodes. Specifically, I studied an electrode modified 

with inert film where a redox probe transitions from solution into film and undergoes electrolysis at the 

electrode surface (Figure 3). For this a convolution method was used to analyze the data.  

 

Figure 3. The molecule (redox probe) A has concentration 𝐶∗ and 

diffusion coefficient 𝐷𝑠 in solution. In the film, with thickness 𝑙, A 

has diffusion coefficient 𝐷𝑓 and concentration characterized by 

the extraction parameter 𝜅. On voltammetric perturbation, A 

undergoes reversible heterogeneous electron transfer at the 

electrode to become molecule B. 
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Two previous students and I developed code using MATLAB and C++ to approximate several parameters, 

such as film diffusion length. Convolution methods are advantageous because they can discriminate 

against nonfaradaic capacitance and uncompensated resistance while also allowing rapid determination 

of reaction kinetics. The model is independent of electrode kinetics and operates under Fick’s laws of 

diffusion (Equations (7) and (8) for Concentration, 𝐶, Diffusion Coefficient, 𝐷, and Flux, 𝐽) to describe the 

current-voltage scheme and find the limiting parameters of interest.  

𝐽(𝑥, 𝑡) = −𝐷
𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
 (7) 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 (8) 

 

Throughout the process boundary conditions specific to the film solution interface are employed and the 

discrete version of equation 7 and 8 are iterated in time using an explicit finite difference algorithm. 

Overall, the model’s approximation for a particular film thickness provides an improved analysis of 

voltammograms for inert films on electrodes. I have a number of future projects involving this model. In 

particular, my chemistry adviser and I have discussed the possibility of incorporating magnetic effects into 

the system. This would then involve Maxwell’s equations. 

I had the pleasure of attending an AMS Mathematics Research Communities Workshop on Sea Ice 

Modeling this past summer. Several attendees and I developed a basic model that demonstrates having a 

height and depth dependent coefficient of drag has a significant effect on sea ice stress. Most models 

prior to 2010 only considered an average height and depth when calculating the drag coefficients of air 

and water. More stress on the ice equates to a faster rate of breakup. This has serious consequences for 

our environment since a faster breakup rate implies an accelerated melting rate. The current model uses 

the conservation of momentum equation. Included in this equation is mass and velocity of the ice (𝑚 and 

𝑣, respectively), drag due to air (𝜏𝑎), water drag (𝜏𝑤), the Coriolis Effect (𝑚𝑓𝑐𝑘 × 𝑢), internal stress (∇σ), 

and the tilt of the ice (𝑚𝑔∇𝐻).  

𝑚
𝜕𝑣

𝜕𝑡
= 𝜏𝑎 + 𝜏𝑤 −𝑚𝑓𝑐𝑘 × 𝑣 + ∇σ −𝑚𝑔∇𝐻 (9) 

The workshop was very beneficial as a significant portion of time was spent discussing ideas and questions 

we have yet to answer. To answer one of the questions, I have begun developing my own working sea ice 

model with a very eager high school student during the summer of 2015. I thoroughly enjoyed advising 

the student! In fact, in the spring of 2016 I plan to do a semester long research study with an 

undergraduate student. Overall, I look forward to continuing my research and guiding those at any level, 

who wish to join me.  
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